1. How we got to now: the digital data transformation
- The origin of data-driven approaches in government, academia and business
- Progress in data factor markets
         - Data connectivity
         - Data storage
         -Data processing
- Quantification of everything
         - IoT
         - Smart Cities
         -Wearables
- A brave new world of perfect information
2. Where data science is headed: the coming datapocalypse
- The dependency of data science on the theory of variance
- Why data centralization will kill traditional data science
- Why most organizations are will be prepared for the coming wave of data
- Why most organizations are totally unprepared for blockchain data
3. Why blockchain is the solution for data science
- Blockchain as a data engineering solution
         - Defined quantification
         - Data completeness
         -Data trustworthiness
- Blockchain as a data analytics solution
         - Data access and preparation
         -Data scope and data totality improvements
         - New data science frameworks
4. Examples of successful blockchain data science projects
         - Finance
         - Ecommerce
         -Healthcare
         - Fintech & SaaS
- Use cases by organizational type
         - SMBs
         -Enterprises
         -Government
         -NGOs
- Use cases by organizational department
         -Business Intelligence
         - Marketing
         -Customer Experience Management
         -Procurement & Fulfillment
5. How to get started with your first blockchain-based data science project
- Offensive strategies for adopting blockchain into data science workflows
         -Data maturity stage audit
         -Prioritizing blockchain data science projects
         -Build or buy blockchain data science solutions
- Defensive strategies for adopting blockchain into data science workflows
         -Competitive intelligence and secondary research
         -Macro metric correlations for blockchain data science models
         -Game theory and “best response” actions