SPLK-ANDATSC - Splunk 8.0 for Analytics and Data Science

This 13.5 hour certification & training course is for users who want to attain operational intelligence level 4, (business insights) and covers implementing analytics and data science projects using Splunk's statistics, machine learning, built-in and custom visualization capabilities.

Duration: 3.0 days

Enquire Now

Start learning today!

Click Hereto customize your Training


  • Analytics Framework
  • Exploratory Data Analysis
  • Regression for Prediction
  • Cleaning and Preprocessing and Feature Extraction
  • Algorithms, Preprocessing and Feature Extraction
  • Clustering Data
  • Detecting Anomalies
  • Forecasting
  • Classification


Module 1 - Analytics Workflow

  • Define terms related to analytics and data science
  • Define the analytics workflow
  • Describe common usage scenarios
  • Navigate Splunk Machine Learning Toolkit

Module 2 - Exploratory Data Analysis

  • Describe the purpose of data exploration
  • Identify SPL commands for data exploration
  • Split data for testing and training using the sample command

Module 3 - Predict Numeric Fields with Regression

  • Differentiate predictions from estimates
  • Identify prediction algorithms and assumptions
  • Describe the fit and apply commands
  • Model numeric predictions in the MLTK and Splunk Enterprise
  • Use the score command to evaluate models

Module 4 - Clean and Preprocess the Data

  • Define preprocessing and describe its purpose
  • Describe algorithms that preprocess data for use in models
    • Use FieldSelector to choose relevant fields
    • Use PCA and ICA to reduce dimensionality
    • Normalize data with Standard Scaler and Robust Scaler
    • Preprocess text using Imputer, and NPR, TF-IDF, Hashing Vectorizer and the cluster command

Module 5 - Cluster Data

  • Define Clustering
  • Identify clustering methods, algorithms, and use cases
  • Use Smart Clustering Assistant to cluster data
  • Evaluate clusters using silhouette score
  • Validate cluster coherence
  • Describe clustering best practices

Module 6 - Anomaly Detection

  • Define anomaly detection and outliers
  • Identify anomaly detection use cases
  • Use Splunk Machine Learning Toolkit Smart Outlier Assistant
  • Detect anomalies using the Density Function algorithm
  • Optimize anomaly detection with the Local Outlier Factor
  • View results with the Distribution Plot visualization

Module 7 - Estimation and Prediction

  • Differentiate predictions from forecasts
  • Use the Smart Forecasting Assistant
  • Use the StateSpaceForecast algorithm
  • Forecast multivariate data
  • Account for periodicity in each time series

Module 8 - Classification

  • Define key classification terms
  • Use classification algorithms
    • Auto Prediction
    • Logistic Regression
    • SVM (Support Vector Machines)
    • Random Forest Classifier
  • Evaluate classifier tradeoffs
  • Evaluate results of multiple algorithms




  • Splunk Fundamentals 1
  • Splunk Fundamentals 2
  • Splunk Fundamentals 3
  • or equivalent Splunk experience



Course Benefits

  • Career growth
  • Broad Career opportunities
  • Worldwide recognition from leaders
  • Up-to Date technical skills
  • Popular Certification Badges

Splunk Popular Courses


This course focuses on creating inputs, chain searches, event annotations, and improving dashboard performance.


This course focuses on dashboard creation, including prototyping, the dashboard definition, layouts types, adding visualizations, and dynamic coloring.


This course will focus on lookup commands and explore how to use subsearches to correlate and filter data from multiple sources


This course will focus on searching and formatting time in addition to using time commands and working with time zones.
Enquire Now
By clicking "Submit", I agree to the Terms Of Use and Privacy Policy