AWSPDSASM - Practical Data Science with Amazon SageMaker

You will learn how to solve a real-world use case with Machine Learning (ML) and produce actionable results using Amazon SageMaker. This course walks through the stages of a typical data science process for Machine Learning from analyzing and visualizing a dataset to preparing the data, and feature engineering. Individuals will also learn practical aspects of model building, training, tuning, and deployment with Amazon SageMaker. Real life use case includes customer retention analysis to inform customer loyalty programs.

INR 12000 + tax

Date : 27 May 2024

Code: awspdsasm

Duration: 1.0 day

other dates

Schedule

Virtual ILT | 27 May 2024 - 27 May 2024
Virtual ILT | 03 Jun 2024 - 03 Jun 2024
Virtual ILT | 09 Jul 2024 - 09 Jul 2024
Virtual ILT | 06 Aug 2024 - 06 Aug 2024
Virtual ILT | 17 Sep 2024 - 17 Sep 2024
Virtual ILT | 08 Oct 2024 - 08 Oct 2024
Virtual ILT | 19 Nov 2024 - 19 Nov 2024
Virtual ILT | 03 Dec 2024 - 03 Dec 2024

Start learning today!

Click Hereto customize your Training

Objectives

  • Prepare a dataset for training
  • Train and evaluate a Machine Learning model
  • Automatically tune a Machine Learning model
  • Prepare a Machine Learning model for production
  • Think critically about Machine Learning model results

Content

Module 1: Introduction to machine learning

  • Types of ML
  • Job Roles in ML
  • Steps in the ML pipeline

Module 2: Introduction to data prep and Sage Maker

  • Training and test dataset defined
  • Introduction to Sage Maker
  • Demonstration: Sage Maker console
  • Demonstration: Launching a Jupiter notebook

Module 3: Problem formulation and dataset preparation

  • Business challenge: Customer churn
  • Review the customer churn dataset

Module 4: Data analysis and visualization

  • Demonstration: Loading and visualizing your dataset
  • Exercise 1: Relating features to target variables
  • Exercise 2: Relationships between attributes
  • Demonstration: Cleaning the data

Module 5: Training and evaluating a model

  • Types of algorithms
  • XGBoost and Sage Maker
  • Demonstration: Training the data
  • Exercise 3: Finishing the estimator definition
  • Exercise 4: Setting hyperparameters
  • Exercise 5: Deploying the model
  • Demonstration: hyperparameter tuning with Sage Maker
  • Demonstration: Evaluating model performance

Module 6: Automatically tune a model

  • Automatic hyperparameter tuning with Sage Maker
  • Exercises 6-9: Tuning jobs

Module 7: Deployment/production readiness

  • Deploying a model to an endpoint
  • A/B deployment for testing
  • Auto Scaling
  • Demonstration: Configure and test auto scaling
  • Demonstration: Check hyper parameter tuning job
  • Demonstration: AWS Auto Scaling
  • Exercise 10-11: Set up AWS Auto Scaling

Module 8: Relative cost of errors

  • Cost of various error types
  • Demo: Binary classification cutoff

Module 9: Amazon Sage Maker architecture and features

  • Accessing Amazon Sage Maker notebooks in a VPC
  • Amazon Sage Maker batch transforms
  • Amazon Sage Maker Ground Truth
  • Amazon Sage Maker Neo

Audience

This course is intended for:

  • Developers
  • Data Scientists

Prerequisites

We recommend that attendees of this course have:

  • Familiarity with Python programming language
  • Basic understanding of Machine Learning

Certification

product-certification
        -

Course Benefits

product-benefits
  • Career growth
  • Broad Career opportunities
  • Worldwide recognition from leaders
  • Up-to Date technical skills
  • Popular Certification Badges

AWS Popular Courses

aws-ssds

In this course you will learn to use Amazon SageMaker Studio to boost productivity at every step of the ML lifecycle.

aws-coa

This course teaches systems operators, and anyone performing cloud operations functions how to manage and operate automatable and repeatable deployments of netw

aws-me

AWS Migrations Essentials is a comprehensive set of tools, services, and best practices offered by Amazon Web Services (AWS) to simplify and streamline the proc

aws-dev

In this course, you learn how to use the AWS SDK to develop secure and scalable cloud applications using multiple AWS services
Enquire Now
 
 
 
 
x6JNUn
By clicking "Submit", I agree to the Terms Of Use and Privacy Policy