D91316 - Predictive Analytics using Oracle Data Mining

This Predictive Analytics using Oracle Data Mining Ed 1 training will review the basic concepts of data mining. Expert Oracle University instructors will teach you how to leverage the predictive analytical power of Oracle Data Mining, a component of the Oracle Advanced Analytics option.

Learn To:

  • Explain basic data mining concepts and describe the benefits of predictive analysis.
  • Understand primary data mining tasks, and describe the key steps of a data mining process.
  • Use the Oracle Data Miner to build, evaluate, apply, and deploy multiple data mining models.
  • Use Oracle Data Mining’s predictions and insights to address many kinds of business problems.
  • Deploy data mining models for end-user access, in batch or real-time, and within applications.

Duration: 2.0 days

Enquire Now

Start learning today!

Click Hereto customize your Training

Objectives

Upon completing this course, the learner will be able to meet these overall objectives:

  • Explain basic data mining concepts and describe the benefits of predictive analysis
  • Understand primary data mining tasks, and describe the key steps of a data mining process
  • Use the Oracle Data Miner to build, evaluate, apply, and deploy multiple data mining models
  • Use Oracle Data Mining’s predictions and insights to address many kinds of business problems
  • Deploy data mining models for batch or real-time access by end-users

Content

Module 1: Introduction

  • Course Objectives
  • Suggested Course Prerequisites
  • Suggested Course Schedule
  • Class Sample Schemas
  • Practice and Solutions Structure
  • Review location of additional resources

Module 2: Predictive Analytics and Data Mining Concepts

  • What is the Predictive Analytics
  • Introducting the Oracle Advanced Analytics (OAA) Option
  • What is Data Mining
  • Why use Data Mining
  • Examples of Data Mining Applications
  • Supervised Versus Unsupervised Learning
  • Supported Data Mining Algorithms and Uses

Module 3: Understanding the Data Mining Process

  • Common Tasks in the Data Mining Process
  • Introducing the SQL Developer interface

Module 4: Introducing Oracle Data Miner 4.1

  • Data mining with Oracle Database
  • Setting up Oracle Data Miner
  • Accessing the Data Miner GUI
  • Identifying Data Miner interface components
  • Examining Data Miner Nodes
  • Previewing Data Miner Workflows

Module 5: Using Classification Models

  • Reviewing Classification Models
  • Adding a Data Source to the Workflow
  • Using the Data Source Wizard
  • Using Explore and Graph Nodes
  • Using the Column Filter Node
  • Creating Classification Models
  • Building the Models
  • Examining Class Build Tabs

Module 6: Using Regression Models

  • Reviewing Regression Models
  • Adding a Data Source to the Workflow
  • Using the Data Source Wizard
  • Performing Data Transformations
  • Creating Regression Models
  • Building the Models
  • Comparing the Models
  • Selecting a Model

Module 7: Using Clustering Models

  • Describing Algorithms used for Clustering Models
  • Adding Data Sources to the Workflow
  • Exploring Data for Patterns
  • Defining and Building Clustering Models
  • Comparing Model Results
  • Selecting and Applying a Model
  • Defining Output Format
  • Examining Cluster Results

Module 8: Performing Market Basket Analysis

  • What is Market Basket Analysis?
  • Reviewing Association Rules
  • Creating a New Workflow
  • Adding a Data Source to the Workflow
  • Creating an Association Rules Model
  • Defining Association Rules
  • Building the Model
  • Examining Test Results

Module 9: Performing Anomaly Detection

  • Reviewing the Model and Algorithm used for Anomaly Detection
  • Adding Data Sources to the Workflow
  • Creating the Model
  • Building the Model
  • Examining Test Results
  • Applying the Model
  • Evaluating Results

Module 10: Mining Structured and Unstructured Data

  • Dealing with Transactional Data
  • Handling Aggregated (Nested) Data
  • Joining and Filtering data
  • Enabling mining of Text
  • Examining Predictive Results

Module 11: Using Predictive Queries

  • What are Predictive Queries?
  • Creating Predictive Queries
  • Examining Predictive Results

Module 12: Deploying Predictive models

  • Requirements for deployment
  • Deployment Options
  • Examining Deployment Options

Audience

  • Database Administrators
  • Data Scientist
  • Data Analyst

Prerequisites

N/A

Certification

product-certification

This course is not associated with any Certification.

Course Benefits

product-benefits
  • Career growth
  • Broad Career opportunities
  • Worldwide recognition from leaders
  • Up-to Date technical skills
  • Popular Certification Badges

Oracle Popular Courses

d83527

D83527 - Java SE 8 Fundamentals

d79995

Learn about Oracle SQL tuning and how to apply tuning techniques to your SQL code.

d90871

This training is the first step in mastering MySQL, the world’s most popular open source database.

p10380

P10380 - Oracle Database 18c: Administration Workshop
Enquire Now
 
 
 
 
gEDqRg
By clicking "Submit", I agree to the Terms Of Use and Privacy Policy